Free Deep Dive "Digitising German SMEs Together" on 26.10. Register now
Logo von IKS Gesellschaft für Informations- und Kommunikationssysteme mbH

IKS Society for Information and Communication Systems mbH

Java, Web Development, Data Science, Angular
0
No ratings yet
Send message

Unternehmensdarstellung

Dies ist das Profil des Unternehmens IKS Gesellschaft für Informations- und Kommunikationssysteme mbH. Das Unternehmen ist den folgenden Kategorien zugeordnet: Webentwicklung, Angular Entwicklung, Java Entwicklung, Data Science. Es handelt sich um ein etabliertes Unternehmen. Das Unternehmen besitzt Standorte in folgenden Städten: Hilden.
Daily rate
520€/day
Annual turnover
1-2 million
Employees
90 employees in total
Company type
Established
Location
Hilden

References

Annotation von Stellenausschreibungen

IKS GmbH

Evaluation

No rating available

08/2021 - 10/2021

Hilden

Request similar project

Project description

Die Auswertung von Stellenausschreibungen erfordert viel manuellen Aufwand und nötiges Domänenwissen, etwa über die gängigen Frameworks einer Programmiersprache. Mithilfe eines Proof of Concepts sollte gezeigt werden, wie gut sich Programmiersprachen und Frameworks automatisiert labeln lassen um den manuellen Aufwand zur Auswertung von Stellenausschreibungen zu reduzieren und Trends in der Nachfrage nach bestimmten Frameworks und Programmiersprachen zu identifizieren.

 

Activities

·        Erstellung von statischen Annotationsregeln von Programmiersprachen & -frameworks. Für eine Liste möglicher Programmierframeworks wurde ein kleines Pythonskript erstellt, welches den Python Package Index (für Python-Frameworks) sowie den NPM Package Index (für Javascript-Frameworks) crawlt und in Annotationsregeln übersetzt.

·        Mithilfe der statischen Annotationsregeln wurde die Datenbasis initial annotiert.

·        Erstellung eines Trainingssatzes um eine NER-Komponente (Named Entity Recognition) mithilfe des NLP-Frameworks SpaCy zu trainieren. Als Ausgangsbasis wurde hierfür eine Stichprobe des vorannotierten Datensatzes erstellt und mithilfe des Tools Label Studio manuell ergänzt

·        Training einer NER-Komponente mithilfe des NLP-Frameworks SpaCy. Das trainierte Modell wurde anschließend als Python-Paket deployt und in die bestehende Anwendung integriert.

 

Main focus

- Programming in Python

JavaScript
Natural Language Processing
Python
NPM

Visualisation of software projects

Freight exchange

Evaluation

No rating available

03/2020 - 05/2022

Erkrath

Request similar project

Project description

In software projects, there is often the danger of the formation of knowledge monopolies. The content of this project is to identify knowledge monopolies in the source code. For this purpose, meta-information on source code repositories is collected and processed with the software created in this project. An interactive visualisation was created from the processed data, which allows the user to identify possible knowledge monopolies The user navigates interactively through the project directory, where possible knowledge monopolies are highlighted in colour.

Activities
  • Programming a Python script to crawl git metadata. The Python script extracts metadata for a project repository for each line of code written in the project. The captured metadata is then written to a .csv file.
  • Analysis and preparation of the metadata using pyspark and Zeppelin Notebook. In order to be able to present the metadata visually later, the raw data was prepared. For this purpose, the information "number of lines of code", "number of authors" and "number of lines of code older than 6 months" were aggregated for the individual files. The data was also translated into a json format, which is needed for visualisation in d3.js.
  • Programming of an interactive visualisation using the Javascript framework d3.js. The processed metadata was translated into a packed circles visualisation. Here, the folders and files of a project are displayed in the form of packed circles. The programmed visualisation allows the user to navigate through the project directory by clicking on the individual circles. Possible knowledge monopolies are highlighted in colour so that the user can identify possible knowledge monopolies.
Main focus
  • Programming in Python
  • Exploratory data analysis
  • Creation of visualisations
Development environment, tools, methods

Python, pyspark, HTML, JavaScript, D3.js, Git, Zeppelin notebook, 

CSV
HTML
Git
JavaScript
PySpark
JSON
d3.js
Python
Data Analysis

DWH/ETL Pipeline

Car financing portal

Evaluation

No rating available

08/2020 - 01/2022

Neuss

Request similar project

Project description

Description

The content of this project was the new construction of an existing data warehouse. The data warehouse was used to generate reports on business development.

The motivation for the new setup was the high maintenance effort and the susceptibility to errors, as well as the lack of flexibility, as reports could only be generated once a day. The old solution was also unable to synchronise manual interventions in the production database, which occurred in day-to-day business, e.g. in the case of cancellations, with the data warehouse.

The newly built data warehouse enables the individual departments to generate reports with Microsoft Power BI in order to monitor business development or make strategic decisions. By implementing a history log, reports can be generated for every data status in the past.

Activities

- Maintenance and improvement of the existing Python scripts for generating the daily business reports. Among other things, the time required to generate the daily business report (Excel) was reduced from over 2 hours to about 1 minute.

- Building the new data warehouse based on a developed history protocol and Apache Airflow. The history log is a solution based on database triggers that records all operations in the production database. The built ETL pipeline in Apache Airflow transforms this history log into a data model that can be used to create reports using Microsoft Power BI.

- Building reports using Microsoft Power BI. In addition to the migration of the existing business reports, further visualisations were built for exploration, e.g. a map representation of the sales activities maintained in the CRM, which can be filtered by sales area/activity type.

- Support with the introduction of Power BI Cloud in the company. After a trial phase with Power BI Desktop, it was decided to switch to Power BI Cloud. For this, an operational concept was created and Power BI Gateway was installed and set up so that the on-premise database could be accessed for report creation. Training materials were also created and the users were subsequently trained.

- Migration of the reports to Power BI Cloud. The reports created in the trial phase were migrated to Power BI Cloud. The different data models were merged and additional security rules were implemented so that users can only access the data intended for them.

 

 

Main focus

- Programming in Python

- Exploratory data analysis

- Building reports using Microsoft Power BI

- Creation of new & migration of existing reports in Power BI Cloud

- Conduct training in Power BI Cloud

- Support with the introduction and administration of Power BI Cloud

Development environment, tools, methods

Python, git, Apache Airflow, Docker, Microsoft Power BI

Branch

B2B platform for the brokerage of vehicle financing

Docker
ETL
Data warehouse
Development Environments
Microsoft Power BI
Python
Data Analysis

Support of online marketplace for freight offers by ML

Freight exchange

Evaluation

No rating available

05/2020 - 07/2022

Erkrath

Request similar project

Project description

The content of this project is the improvement of an online marketplace for freight transports through machine learning. One component of the marketplace is a web interface through which freight forwarders can post offers for freight transport. The marketplace is to be improved in the future through the use of machine learning, for example to support customers in pricing or to identify faulty offers. By creating a prototype, the first step is to evaluate how well the prices of the freight transport offers can be predicted with the help of machine learning.

Activities
  • Conduct an exploratory data analysis on a section of the existing database to identify necessary processing steps and find possible forecast parameters.
  • Programming of a Python script to standardise the offer prices. The data analysis showed that freight offers were available in different currencies. A Python script was created that converts all offer prices into euros. The respective daily exchange rate (day of quotation) was used for this.
  • Programming a Python script for further data cleaning. The data analysis also showed that the data quality was insufficient for training an ML model. With the help of a Python script, further cleaning steps were carried out, such as removing incomplete data sets and filtering outliers.
  • Training and evaluation of different machine learning models. Using the cleaned data, a linear regression model and a random forest regressor were trained and the results of both models were evaluated.
Main focus
  •  Programming in Python
  • Exploratory data analysis
  •  Preparation of data with Python
  •  Machine Learning
Development environment, tools, methods

Python, pandas, sklearn, zeppelin notebook, git

Git
Data Cleaning
Pandas
Python
Data Analysis
Scikit-Learn

Main focus

SQL
Docker
Java
HTML
Spring Web MVC
CSS

Other skills

Git

Industries

Financial Services
30 - 50 projects
Transport and Logistics
10 - 30 projects
Internet and IT
0 - 10 projects

Dein persönlicher Ideen- und Beratungsassistent

Nutze unseren KI-Bot, um gezielt Fragen zu diesem Dienstleister zu stellen, Inspiration für dein Projekt zu sammeln oder passende Alternativen zu finden. Schnell, einfach und rund um die Uhr für dich da!

en_GBEnglish

Send message

Stelle hier anonym deine Frage an das Unternehmen, z.B. nach Verfügbarkeiten, Sätzen und Referenzen.

An welche Mailadresse sollen wir die Antwort senden? Wir geben diese nicht an das Unternehmen weiter.